A Holocene Sediment Record of Phosphorus Accumulation in Shallow Lake Harris, Florida (USA) Offers New Perspectives on Recent Cultural Eutrophication

نویسندگان

  • William F. Kenney
  • Mark Brenner
  • Jason H. Curtis
  • T. Elliott Arnold
  • Claire L. Schelske
  • Liping Zhu
چکیده

We studied a complete Holocene sediment record from shallow (zmax = 9.7 m) Lake Harris, Florida (USA) to infer the historical development of the lake and its current eutrophic status. We used (210)Pb and (14)C to date the 5.9-m sediment sequence (core LH-6-13) and determined accumulation rates for bulk sediment, organic matter, calcium carbonate, phosphorus fractions and biogenic silica fractions. The chronology of changes in sediment characteristics for LH-6-13 is consistent with the general paleoenvironmental framework established by core studies from other Florida lakes. Lake Harris began to fill with water in the early Holocene, ca. 10,680 cal a BP. A shift from carbonate-dominated to organic-rich sediments ca. 5,540 cal a BP corresponds to a transition to wetter climate in the middle Holocene. A rapid increase in diatom biogenic silica concentrations and accumulation rates ca. 2,600 cal a BP signals that the lake had deepened to its modern limnetic state. In LH-6-13, an up-core decrease in rates of accumulation for several sediment variables indicates time-course oligotrophication of the lake through the Holocene. In near-surface sediments, abrupt increases in the accumulation rates of these same variables indicate progressive cultural eutrophication after ca. AD 1900. Comparison of the modern state of Lake Harris to its condition 50-100 years ago provides a measure of the impact of recent cultural eutrophication. Because the pre-disturbance trajectory of this lake was one of oligotrophication, the true impact of cultural eutrophication is even greater than what is inferred from the changes over the past century.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sediment biomarkers elucidate the Holocene ontogeny of a shallow lake

We carried out geochemical analyses on a sediment core from Lake Harris, Florida (USA) to identify sources of organic matter to the sediment throughout the Holocene, and relate changes in those sources to shifts in past climate and environmental conditions. We hypothesized that the sources of organic matter changed in response to regional hydrologic shifts following de-glaciation, and to human ...

متن کامل

An eutrophication model for a lowland river-lake system

Natural and man induced nutrient loads affect the functioning of freshwater ecosystems and restrict various water uses. In particular, internal pollution by nutrient remobilisation from sediment plays an important role in shallow water bodies. A sustainable management of such freshwater ecosystems can be achieved by using simulation models. To forecast the eutrophication process of a shallow ri...

متن کامل

ECO: A Generic Eutrophication Model Including Comprehensive Sediment-Water Interaction

The content and calibration of the comprehensive generic 3D eutrophication model ECO for water and sediment quality is presented. Based on a computational grid for water and sediment, ECO is used as a tool for water quality management to simulate concentrations and mass fluxes of nutrients (N, P, Si), phytoplankton species, detrital organic matter, electron acceptors and related substances. ECO...

متن کامل

Effects of historical lake level and land use on sediment and phosphorus accumulation rates in Lake Kinneret.

Current paradigms of reservoir ontogeny suggest that water-level fluctuations may increase sedimentary nutrient release, causing long-term eutrophication of water bodies formed by dryland flooding. Less is known of the changes in nutrient status following conversion of natural lakes into reservoirs. Here, we use historical hydrological and limnological data and paleolimnological records of sedi...

متن کامل

A holocene perspective on algal mercury scavenging to sediments of an Arctic lake.

Anthropogenic activities have increased the amount of mercury (Hg) transported atmospherically to the Arctic. At the same time, recent climate warming is altering the limnology of arctic lakes and ponds, including increases in aquatic primary production. It has been hypothesized that climate-driven increases in aquatic production have enhanced Hg scavenging from the water column, and that this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016